3.10.78 \(\int \frac {1}{\sqrt {a+b x^2-c x^4}} \, dx\) [978]

Optimal. Leaf size=169 \[ \frac {\sqrt {b+\sqrt {b^2+4 a c}} \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{\sqrt {2} \sqrt {c} \sqrt {a+b x^2-c x^4}} \]

[Out]

1/2*EllipticF(x*2^(1/2)*c^(1/2)/(b+(4*a*c+b^2)^(1/2))^(1/2),((b+(4*a*c+b^2)^(1/2))/(b-(4*a*c+b^2)^(1/2)))^(1/2
))*(1-2*c*x^2/(b-(4*a*c+b^2)^(1/2)))^(1/2)*(b+(4*a*c+b^2)^(1/2))^(1/2)*(1-2*c*x^2/(b+(4*a*c+b^2)^(1/2)))^(1/2)
*2^(1/2)/c^(1/2)/(-c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {1118, 430} \begin {gather*} \frac {\sqrt {\sqrt {4 a c+b^2}+b} \sqrt {1-\frac {2 c x^2}{b-\sqrt {4 a c+b^2}}} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} F\left (\text {ArcSin}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{\sqrt {2} \sqrt {c} \sqrt {a+b x^2-c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

(Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*
a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^
2 + 4*a*c])])/(Sqrt[2]*Sqrt[c]*Sqrt[a + b*x^2 - c*x^4])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 1118

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[Sqrt[1 + 2*c*
(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]), Int[1/(Sqrt[1 + 2*c*(x^2/(b - q))]*Sqrt[
1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x^2-c x^4}} \, dx &=\frac {\left (\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}\right ) \int \frac {1}{\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}} \, dx}{\sqrt {a+b x^2-c x^4}}\\ &=\frac {\sqrt {b+\sqrt {b^2+4 a c}} \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{\sqrt {2} \sqrt {c} \sqrt {a+b x^2-c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.07, size = 177, normalized size = 1.05 \begin {gather*} -\frac {i \sqrt {1+\frac {2 c x^2}{-b+\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {c}{b+\sqrt {b^2+4 a c}}} x\right )|-\frac {b+\sqrt {b^2+4 a c}}{-b+\sqrt {b^2+4 a c}}\right )}{\sqrt {2} \sqrt {-\frac {c}{b+\sqrt {b^2+4 a c}}} \sqrt {a+b x^2-c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

((-I)*Sqrt[1 + (2*c*x^2)/(-b + Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticF[I*Arc
Sinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x], -((b + Sqrt[b^2 + 4*a*c])/(-b + Sqrt[b^2 + 4*a*c]))])/(Sqr
t[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 145, normalized size = 0.86

method result size
default \(\frac {\sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4-\frac {2 b \left (b +\sqrt {4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, \sqrt {-c \,x^{4}+b \,x^{2}+a}}\) \(145\)
elliptic \(\frac {\sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4-\frac {2 b \left (b +\sqrt {4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, \sqrt {-c \,x^{4}+b \,x^{2}+a}}\) \(145\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(4*a*c+b^2)^(1/2
))/a*x^2)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4-2*b*(b
+(4*a*c+b^2)^(1/2))/a/c)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(-c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [A]
time = 0.08, size = 126, normalized size = 0.75 \begin {gather*} \frac {\sqrt {\frac {1}{2}} {\left (a^{\frac {3}{2}} \sqrt {\frac {b^{2} + 4 \, a c}{a^{2}}} + \sqrt {a} b\right )} \sqrt {\frac {a \sqrt {\frac {b^{2} + 4 \, a c}{a^{2}}} - b}{a}} {\rm ellipticF}\left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} + 4 \, a c}{a^{2}}} - b}{a}}, -\frac {a b \sqrt {\frac {b^{2} + 4 \, a c}{a^{2}}} + b^{2} + 2 \, a c}{2 \, a c}\right )}{2 \, a c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(1/2)*(a^(3/2)*sqrt((b^2 + 4*a*c)/a^2) + sqrt(a)*b)*sqrt((a*sqrt((b^2 + 4*a*c)/a^2) - b)/a)*ellipticF(
sqrt(1/2)*x*sqrt((a*sqrt((b^2 + 4*a*c)/a^2) - b)/a), -1/2*(a*b*sqrt((b^2 + 4*a*c)/a^2) + b^2 + 2*a*c)/(a*c))/(
a*c)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b x^{2} - c x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/sqrt(a + b*x**2 - c*x**4), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(-c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {-c\,x^4+b\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x^2 - c*x^4)^(1/2),x)

[Out]

int(1/(a + b*x^2 - c*x^4)^(1/2), x)

________________________________________________________________________________________